Observation of Two-Electron One-Photon X-ray transitions in collisions of slow Xe$^{26+}$ ions with beryllium surface

L Jabłoński1,*, D Banaś2, P Jagodziński2, A Kubala-Kukuś1, D Sobota1, I Stabrawa1, K Szary1 and M Pajek1

1Institute of Physics, Jan Kochanowski University, 25-406 Kielce, Poland
2Department of Mathematics and Physics, Kielce University of Technology, 25-314 Kielce, Poland

Synopsis Two-Electron One-Photon (TEOP) X-ray transitions were observed for the first time in collisions of highly charged Xe ions with metallic Be surface. The intensities of TEOP X-rays are well described by performed MCDF for one-electron one-photon (OEO) dipole-allowed transition of Paschen and Brackett series assuming constant TEOP/OEOP branching ratio. The importance of the Internal Dielectronic Excitation (IDE) in relaxation of hollow Xe ions/atoms has been evidenced and discussed.

Slow highly charged ions (HCI) colliding with metal surface are rapidly neutralized forming highly excited Rydberg states, “hollow” atoms, which subsequently relax in a series of fast processes including Interatomic Coulombic Decay (ICD) [1] and X-ray and Auger electron emission cascade. It was evidenced the Internal Dielectronic Excitation (IDE) [2] contributes to relaxation of “hollow” atoms. We report here on the first observation of the TEOP X-ray transitions measured in interaction of slow Xe$^{26+}$ ions with metallic beryllium surface. We show that TEOP process, predicted by Heisenberg in 1925 [3], contributes to X-ray emission from “hollow” atoms. In the present experiment the X-rays were emitted from 209 keV Xe$^{26+}$ ions neutralized at metallic Be foil by capturing resonantly the electrons into Rydberg states with n≈25. The ion beam was produced by the EBIS-A facility [4]. For Xe$^{26+}$ ions having filled M-shell the observed M-X-rays, which were excited by the IDE process, were measured with XFlash silicon drift detector (SDD). The measured M-X-rays were dominated by OEOP electric-dipole transitions (nf-3d) and reasonably well interpreted (Fig. 1)in terms of the MCDF calculations performed using GRASP2K code [5].

We have found that the high energy part of X-ray spectrum, extending roughly over doubled energy range of the OEOP transitions, can be explained by the TEOP transitions, having photon energies slightly bigger than doubled energy of the diagram M-X-ray transitions. Contribution of the TEOP transitions to the measured X-ray spectrum was calculated by assuming constant TEOP/OEOP ratio for these processes.

![Figure 1. Measured spectrum of X-rays for 209 keV Xe$^{26+}$ ions colliding with Be foil.](image)

Consequently, the shape of TEOP was the same as for OEOP with stretched energy scale by a factor of about two. Despite of simplicity of the proposed approach, discussed OEOP and TEOP transitions reproduce reasonably well the measured X-rays. The results evidence importance of electron-electron correlations in relaxation of hollow atoms.

Acknowledgments

The financial support of the EU within the Polish Innovative Economy Operational Program (Contact No. WNP-POIG.02.02.00-26-023/08) is acknowledged.

References

* E-mail: l.jablonski@ujk.edu.pl